
Concept Proposal: Assessment of Candidate Genetic Variants in Orofacial Clefts 

Abstract 

Non-syndromic cleft lip and/or palate (NSCL/P) account for over 70% of all cleft cases globally, 

and although the contribution of genetic components to the cleft development has been strongly 

established, very little is understood about the role copy-number variants (CNVs) play in shaping 

their onset. CNVs detected in NSCL/P patents will be compared with a null distribution of CNVs 

in the human genome and a distribution of CNVs across the genome in general population to 

determine whether the CNVs in patients are likely to have occurred by chance. Genes within the 

CNVs will be prioritized according to whether multiple patients have deleted or duplicated copies 

of the gene and the level of expression of the genes in developing lip and palate in mice. Biological 

pathways enriched in the prioritized genes will be considered as pathways that are potentially 

involved in NSCL/P. 

Purpose 

This study aims to explore the contribution and potential roles that CNVs might have in non-

syndromic orofacial cleft development. 

Background 

Orofacial clefts remain one of the most common birth defects globally1 and rank as the second 

most common birth defect in the United States2. Prevalence remains disproportionately high 

relative to other birth defects, with an estimated occurrence of about 1.5 cases per 1,000 live 

births3. Orofacial clefts result from disruptions in the normal embryogenetic processes that causes 

the tissues of the face to fuse properly2, and phenotypically present as a cleft in the lip and/or palate 

(CL/P), or a cleft in the palate only (CPO)2, 4. Non-syndromic cleft lip and/or palate comprises a 

subgroup of orofacial clefts that is not associated with any other congenital anomaly or clinical 

morbidity. Among all orofacial clefts cases, non-syndromic cases are the most reported, with 

incidence as high as 70% in cleft lip cases and more than half of cleft palates alone1. The onset of 

orofacial clefts is influenced by heterogeneous, complex interactions between genes and the 

environment, making it difficult to establish a unique cause. However, several risk factors that 

impact cleft development have been identified, including smoking, pregestational and gestational 

diabetes, alcohol abuse, and the use of some anticonvulsants5, 6, 7. There is also a strong genetic 

component associated with cleft development, with over 200 and 400 genetic syndromes uniquely 

linked with cleft lip and cleft palate, respectively8. Structural aberrations in the genome with 

significant disease-causing potential include micro-deletions and micro-duplications of segments 

of DNA sequence; mostly presenting as CNVs. 

Relative to other changes, CNVs are the most likely to impact cleft development due to the wide 

variability in the potential duplications and deletions that could occur in the genome. CNVs arise 

from the gain and/or loss of genetic material, causing the number of repeat copies of segments of 

DNA sequence to vary in a population. In contrast to single nucleotide polymorphism (SNPs), 

which affect only one nucleotide, CNVs are much larger, ranging from 50 base pairs to several 

megabases in size10. Large CNVs may contain genes, resulting in gene duplication or deletion. 

CNVs are usually inherited but can also arise de novo (although a rare event). It is estimated that 

the human genome contains ~20,000 CNVs11 that cover about 12% of the human genome12. 



Recently, there have been more focused studies aiming to reveal the genetic architecture of 

orofacial cleft development, particularly to elucidate which regions in the genome most likely 

make one susceptible to orofacial cleft. In this study, we ask how CNVs are implicated and might 

drive cleft development, particularly non-syndromic ones. 

Methods 

1.0 Study Group and Study Sample 

Non-syndromic cleft cases will be extracted from the publicly available dataset previously 

published by Landson et al., (2023)9. The extracted samples will consist of 1,021 individuals; 

including patients seen during a surgical screening in the Philippines (792) and patient samples 

evaluated at the University of Iowa (229) with different European ancestry. All samples comprise 

58,535 CNVs; 47,390 from the Philippines cohort and 11,145 from the European cohort. The 

subgroups of our study samples are presented in table 1 below. 

Table 1: A summary of study subjects with oral clefts and copy-number variants to be included in 

our study. 

Ancestry 

Orofacial cleft phenotype 

Total 
Cleft lip 

Cleft lip with 

cleft palate Cleft palate only 

Subjects 

(n) 

CNVs 

(n) 

Subjects 

(n) 

CNVs 

(n) 

Subjects 

(n) 

CNVs 

(n) 

Subjects 

(n) 

CNVs 

(n) 

Philippines 207 13,166 531 31,037 54 3,187 792 47,390 

Europe 33 1,846 166 7,997 30 1,302 229 11,145 

Total 240 15,012 697 39,034 84 4,489 1,021 58,535 

1.1 Study Design 

This will be a retrospective study using an already-collected patient data from a publicly available 

dataset on cleft cases from a previous publication. 

1.2 Data Analysis 

All analysis will be performed with Rstudio13, BEDTOOLS14, and on Marshfield Clinic’s BIR20-

LC Linux Server. 

1.2.1 Identify Overlapping CNV Regions in Patients 

We aim to first determine the common genomic regions shared by patient CNVs, which include 

the start-end genomic coordinates of each unique overlap. Thereafter, the total number of overlaps 

in each CNV common genomic region will be determined. This, in essence, will represent the 

number of patients that share that CNV common region/overlap. The following steps of the 

analysis will focus on the CNV common genomic regions. The underlying assumption of the 

analysis is that CNV common regions shared by more than one patient are more relevant to 

orofacial clefts than CNV regions observed in only a single patient. 



1.2.2 Assess whether CNV overlaps in patients occur by chance, using an empirical p-value. 

Random sampling of a reference genome will be performed n times (we propose 1,000) to obtain 

a list of CNVs of the same number and sizes as the CNV common genomic regions previously 

determined in the patients. This will produce 1,000 lists of random CNVs across the reference 

genome. The mean number of overlapping CNVs in each list will then be calculated. With the use 

of the 1,000 means, the overall mean and standard deviation of the number of overlapping CNVs 

among the entire set of 1,000 samples will be calculated. A z-score for each randomized list will 

be calculated as: 
 

𝑧𝑖 = (𝜇𝑖 − 𝜇̅)/𝜎  for 𝑖 ∈ 𝑅                                                                                                           (1) 
 

where 𝜇𝑖 represents the mean number of overlaps of a specific randomized list (i), 𝜇̅ indicates the 

overall mean number of overlaps among all lists (average of all 1,000 means), 𝜎 indicates the 

overall standard deviation of the number of overlaps among all lists, and R represents the set of 

1,000 randomized lists. The set of 1,000 z-scores will form a null distribution of z-scores.  A z-

score for patient overlapping CNVs will be calculated using the same formula (1) that was applied 

to the randomized lists. To establish statistical significance for patient overlapping CNVs, an 

empirical p-value will be calculated by counting the number of z-scores from the 1,000 lists that 

matched or exceeded the patient z-score. 
 

Data interpretation: The distribution of z-scores from the 1,000 randomized lists represent the 

number of CNV overlaps observed by chance. If the z-scores from the 1,000 randomized lists 

match or exceed the patient z-score, this means that the patient z-score falls within the null 

distribution of z-scores and the number of CNV overlaps in patients could have occurred by 

chance. If the patient z-score does not fall within the null distribution of z-scores, then the number 

of CNV overlaps in patients would be unlikely to have occurred by chance, with a p-value < 0.001. 

If the number of CNV overlaps in patients are unlikely to be due to chance, then one or more of 

these CNV overlapping regions in patients are potentially relevant to orofacial clefts.   

  

1.2.3 Prioritize genes encompassed by overlapping CNV regions in patients. 

A list of the locations of all genes throughout the human reference genome will be generated using 

the UCSC Genome Browser15. This list will be filtered using three main steps. Step 1 will be to 

obtain the subset of genes that coincide with the location of patient CNV common genomic 

regions. Step 2 will be to exclude genes identified in step 1 that are deleted or duplicated in only 

one patient. Step 3 will be to retain only the genes from step 2 that are highly expressed in 

embryonic mouse facial and palate structures. The retained genes from step 3 will then be our list 

of prioritized genes. Next, we will use a hypergeometric test to determine whether the prioritized 

genes are enriched in genes known to be associated with orofacial clefts in scientific literature. 
 

Data interpretation: If the list of prioritized genes shows statistically significant enrichment of 

genes known to be associated with orofacial clefts, this will suggest that patient CNV overlapping 

regions coincide with genes of relevance to orofacial clefts. 
 

1.2.4 Assess the likelihood of Patient CNVs to occur in regions of the genome with high variability. 

This analysis will determine the distribution of the number of CNVs across the genome in the 

general population, and the upper extreme of this distribution will be considered to represent 

genomic regions with high variability. The count of patient overlapping CNVs will be compared 

with this distribution to determine whether the patient data falls within or beyond the upper 

extreme of the distribution. 



The genomic coordinates of CNVs occurring in the general population will be obtained from the 

NCBI’s dbVar16 database. Our reference human genome will be split into regions (windows) of 

one mega base in size, and the number of CNVs present in the general population in each window 

will be counted. Windows with a higher count will be considered as regions of the genome with 

higher variability. The mean and standard deviation of the counts across all windows will also be 

calculated. Next, a z-score for each window will be calculated according to: 
 

𝑧𝑖 = (𝑐𝑖 − 𝑐̅)/𝜎  for 𝑖 ∈ 𝑊                                                                                                           (2) 
 

where 𝑐𝑖 represents the number of CNVs in a specific window (i), 𝑐̅ indicates the mean number of 

CNV across all windows, 𝜎 indicates the standard deviation of the number of CNVs across all 

windows, and W represents the set of all windows across the genome. The obtained z-scores will 

then be used to generate a frequency distribution of the count of CNVs per mega base in the general 

population. Now, using the known location of genes in the genome, the z-scores for the windows 

that coincide with prioritized genes and known genes associated with orofacial clefts also will be 

determined. Finally, the z-scores of the genes will be compared with the distribution of z scores 

from the general population to determine whether the z-scores of the genes fall within or beyond 

the upper extreme of the distribution of z-scores from the general population. 
 

Data interpretation: If the genes are located in regions with high variability, then patient CNVs 

that coincide with these genes will be considered as having arisen in regions of the genome where 

CNVs are observed with very high frequency in the general population. This would suggest that 

the patient CNV overlapping regions could be due to chance alone. If the genes are not located in 

regions with high variability, then this would suggest that patient CNV overlapping regions are 

unlikely to have occurred due to chance and are potentially relevant to orofacial clefts. 

 

1.2.5. Perform Gene Ontology Analysis to Determine Pathways influenced by High Confidence 

CNVs 

Lastly, Gene ontology analysis will be performed to identify the biological pathways enriched in 

our prioritized list of genes. The analysis will be performed directly from the Gene ontology 

website16, with the use of the PANTHER over-representation test17 from the PANTHER gene 

classification resource18. 
 

Data interpretation: Any statistically significant biological pathways identified in Gene ontology 

analysis will be considered as pathways that are potentially impacted by patient overlapping CNVs 

and are involved in orofacial clefts. 

 

Project Timeline 
 

Time period Activities 

May 29-Jun 9 Plan project with mentor, literature review, finalize exposures, prepare and 

submit concept proposal. 

Jun 10-30 Complete data request, conduct practice statistical training and begin 

preliminary statistical analysis. 

Jul 1-21 Analyze final dataset, create figures and tables to summarize results. 

Jul 24-Aug 4 Compile findings into a presentation and paper. 

Aug 6-7 Finalize and practice presentation. 

Aug 8 Present findings at the MCRI SRIP Annual Research Symposium 
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Concept Proposal 
 Adverse Childhood Experiences in Rural and Farm Families in Wisconsin 

Objec�ves: 
The objec�ves of this study are to: 

1. Es�mate current trends in Adverse Childhood Experiences (ACEs) in north-central 
Wisconsin children and adolescents – The prevalence of ACEs, including emo�onal, 
physical, and sexual abuse, between 2017-2023, will be reported. 

2. Examine associa�ons between ACEs and farm residence – The odds of ACEs will be 
compared between children/adolescents in farm vs non-farm households. Secondary 
analyses will also compare ACEs between children/adolescents in rural vs. non-rural 
households and by specific ACEs components. Analyses will be conducted without a priori 
hypothesis. 

Background: 
According to CDC 2024, Adverse childhood experiences, or ACEs, are poten�ally trauma�c events that 
occur in childhood1. Numerous studies of ACEs include the following types of adversi�es: physical, sexual 
and emo�onal abuse, as well as exposure to domes�c violence, parental divorce or separa�on, or having 
resided with someone who abused drugs or alcohol, was incarcerated, or had a mental illness2,3. Early life 
exposures to ACEs has been linked to an increased risk of cancer, heart disease, liver disease, depression, 
diabetes, or other chronic illnesses later in life. Moreover, exposure to ACEs can o�en lead to 
intergenera�onal implica�ons, with parental exposure to ACEs having an impact on their children4. 

 
 
 
 
 
 
 
 
 
Figure 1. Developmental changes in children experiencing ACEs 
 

 

ACE showed a linear associa�on with child development: higher number of ACEs, lower the development 
scores5. Findings indicate that addressing the effects of childhood abuse on adult socioeconomic status 
will not significantly reduce health risks3, highligh�ng the need for early interven�ons.  

Burden of ACEs among children in rural areas 

Over 13.4 million children under the age of 18 lived in the rural areas6 and about 1.5 million children under 
the age of 20 live or work on farms, in the United States7. Data from the Na�onal Survey on Children’s 
Health (NSCH) 2011–2012 found that 28.9 % of children living in small rural areas experienced ≥ 2 ACEs 
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compared with 21.3 % of urban children8. Children in large rural areas were more likely to have had at 
least 1 ACEs, than their peers in urban or small rural areas; and children in urban areas were less likely 
than those in rural areas to have had ≥ 2. However, another study showed that rural areas had a 
significantly higher percentage of individuals without ACEs (44.7%) compared to the ones in urban areas 
(40.5%)15, showing increased ACEs in rural areas than urban areas9,10. 

Children living in rural areas experience higher rates of child poverty, under-u�liza�on of preven�ve health 
services, and increased risk of death compared to urban children. The recent opioid epidemic in rural 
America has increased the risk for maltreatment among rural children11.  

Gaps in literature 

Unfortunately, ACEs are too common in U.S. children and adolescents. The evidence on how rural 
residency impacts the risk of ACEs, however, is unclear. Some studies suggest rural children are at greater 
risk of ACE, while others suggest they are at lower risk than their urban or suburban counterparts. 
Furthermore, no studies have examined the burden of ACEs in youth who live on farms. According to the 
CDC, agriculture is one of the most hazardous labor sectors in the U.S12, and farms are o�en a major 
component of rural regions, thus there remains a clear need to expand our knowledge on the burden of 
ACEs in this area. Much of the prior literature is also based on retrospec�ve self-repor�ng of ACEs by 
adults, which may be subject to recall and self presenta�on or detec�on biases3,4,13. The general purpose 
of this study is to examine ACEs in medical records to determine how the burden of medically atended 
ACEs differs in farm vs. non-farm children and adolescents. 

Methods: 
Design and Setting 

We will conduct a cross-sec�onal analysis using clinical and sociodemographic data from the 
electronic health records (EHR) of the Marshfield Health Clinic Health System (MCHS), as well as 
linked data on farm residence from the Wisconsin NCCRAHS Agricultural Injury Surveillance 
(WINS) cohort.14 The source popula�on will include children and adolescents who reside in a 20-
county region of north-central Wisconsin, and who have capture of their medical care within 
MCHS data systems.  

 
Figure 4. 20-county target popula�on of north-central Wisconsin farm and non-farm households.14 

 

 



Participants 

Eligibility criteria for par�cipants will include all children and adolescents who were under surveillance in 
2017-2023 as part of the WINS study. The WINS cohort is described in greater detail elsewhere14, but 
briefly, includes those who, between 1/01/2017 and 12/31/2023:  

(1) were age 0-17 years for ≥ 90 con�nuous days,  
(2) had ≥ 1 medical encounter, and  
(3) had reasonably complete capture of medical care within MCHS data systems as evidenced by:  

(a) “medically homed” to an MCHS medical center (i.e., ≥ 2 preven�ve or well-child visits over the 
previous 3 years or an assigned MCHS primary care provider, 
(b) member of the MCHS-affiliated Security Health Plan (SHP) of Wisconsin or  
(c) resident of the Marshfield Epidemiologic Study Area (MESA).16  

All procedures were approved in advance by the MCHS Ins�tu�onal Review Board, including an approval 
to wave documenta�on of informed consent by HIPAA authoriza�on. 

Sample Size 

There is no known prior research on ACEs in farm popula�ons to guide assump�ons needed for precise 
sample size calcula�ons. Sta�s�cal power, however, is expected to be robust for the planned analysis. In 
any given year, there are approximately 215,000 unique individuals in the study sample. Of these, about 
8,500 (4%) are in the farm group and the remaining 206,500 (96%) are in the non-farm group. The 
es�mated prevalence of ACEs is unknown, par�cularly in medical records data. Based on self-report data 
of adults from mul�ple countries, approximately 60% report having had at least one ACE in their life�me17. 
The prevalence of ACEs in the EHR among children and adolescents is expected to be far lower, perhaps 
as low as 1% or 2% (depending on the case defini�on used). Using this available sample, we calculated the 
effect size needed to detect significant differences between the farm vs. non-farm groups. We would need 
to observe a very modest Cohen’s w effect size of w=0.01 to achieve 80% power in a two-tailed one-degree 
of freedom test. This would, for example, roughly translate into an ACE prevalence of 1.5 % in farm vs 1.0 
% in non-farm individuals (odds ra�o = 1.5). 

Adverse Childhood Experiences 

The primary outcome will be the presence of ACEs. ACEs will be ascertained using similar methods 
outlined by Elia et.al18, including extrac�on of Systema�zed Nomenclature of Medicine Clinical 
Terms (SNOMED) for emo�onal abuse, physical abuse, and sexual abuse. SNOMED codes 
essen�ally map and ‘role-up’ Interna�onal Classifica�on of Disease (ICD)19 codes indica�ve of 
ACEs23. SNOMED is a systema�cally organized collec�on of medical terms linked to codes, 
synonyms and defini�ons used in clinical documenta�on, and it provides a standard approach to 
indexing, storing, and retrieving medical data across special�es and sites of care21. Any individual 
with ACEs during the 2017-2023 study �meframe will be defined as a case. In addi�on, the 
number of ACEs during the study �meframe will also be collected in secondary analyses to 
examine differences in case defini�ons whereby ACEs are observed in mul�ple clinical 
encounters. 

Farm and Rural Residence: 

The primary exposure will be farm and rural residence, per WINS address data. Briefly, that study 
has iden�fied ac�ve farms within the target popula�on, as evidenced by an agricultural 



produc�on address listed on the register of licensed dairy producers from Wisconsin’s 
Department of Agriculture, Trade, and Consumer Protec�on, and/or a commercially available 
purchased lis�ng of farm producers (www.dtn.com/agriculture/). Limita�ons of these farm 
iden�fiers are described elsewhere14. Par�cipants who do not have evidence of farm residence 
will be categorized in the non-farm comparison group. Secondary analyses will also split the non-
farm comparison group into those who live in rural and non-rural areas, per Rural Urban 
Commu�ng Area (RUCA) scores22. RUCA defines rural and urban-grounded residencies based on 
the Census Bureau’s defini�ons of such areas by using a combina�on of criteria including 
popula�on density and commuter paterns. 

Covariates: 

There are numerous sociodemographic and clinical covariates that will be extracted from the EHR. 
The model will consider several a priori specified covariates based on their poten�al to confound 
ACE-farm/rural associa�ons, including age (quar�les), sex, race/ethnicity, health insurance, 
residen�al ZIP code, �me resided in the source popula�on, number of medical encounters in the 
past three years, and various medical comorbidi�es (e.g., cardiovascular disease, diabetes, etc.). 

Analyses: 

Descrip�ve sta�s�cs will be reported for ACEs and all study covariates. Mul�variable logis�c 
regression will be used to examine associa�ons between farm/rural residence and ACEs, including 
adjustment for poten�al confounders, while accoun�ng for the clustering of par�cipants within 
households. Secondary analyses will also examine rural vs. non-rural (non-farm) comparison 
groups, disaggregated ACE outcome measures, as well as sensi�vity analyses restricted to only 
new ACE cases in the 2017-2023 �meframe. All analy�cal procedures will be conducted using 
SAS.  

Project Timeline: 
To be Completed Date 

Project overview, literature review, and 
concept proposal May 28 – June 7 

Access dataset of interest and begin ini�al 
analysis June 10 – June 28 

Analyze final dataset, record results, and 
prepare abstract. July 1 – July 12 

Finalize abstract and prepare presenta�on of 
results July 15- July 22 

Finalize presenta�on July 23 – August 07 

Present findings at MCRI SRIP Research 
Symposium August 08 

http://www.dtn.com/agriculture/
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